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Abstract
A new extra series of conserved densities for the polytropic gas model and
nonlinear elasticity equation is obtained without any reference to the recursion
operator or to the Lax operator formalism. Our method is based on the
utilization of the symmetry operators and allows us to obtain the densities
of arbitrary homogeneity dimensions. The non-polynomial densities with
logarithmic behaviour are presented as an example. Special attention is paid
to the singular case (γ = 1) for which we have found new non-homogeneous
solutions expressed in terms of the elementary functions.

PACS number: 02.30.Ik

1. Introduction

The conservation laws are the most important object in classical mechanics as well as in
field theory. There are many different methods of constructing these laws. The most popular,
especially used in soliton theory and in hydrodynamics, utilizes the so-called recursion operator
or Lax operator formalism [1]. On the other hand, it appears that, for the nonlinear Schrödinger
equation, it is possible to find one series of conserved Hamiltonians using the recursion
operator only. However, for the shallow water equation, which is the dispersionless limit of
the nonlinear Schrödinger equation, there is an additional series of conserved densities which
is impossible to obtain using the recursion operator (see, for example, [2]).

In this paper we would like to show that it is possible to construct a new extra series of
conserved densities for the polytropic gas model and nonlinear elasticity equation [3, 4]
avoiding using the recursion operator or Lax formalism. More precisely, we generate
many non-equivalent Hamiltonians of the given dimensions, using the symmetry operator.
Our Hamiltonians are non-polynomial expressions which contain logarithmic functions.
Independently, we consider the singular case, for the polytropic gas system for which γ = 1.

0305-4470/03/318463+10$30.00 © 2003 IOP Publishing Ltd Printed in the UK 8463

http://stacks.iop.org/ja/36/8463


8464 M V Pavlov and Z Popowicz

For this system we have constructed a new series of non-homogeneous solutions expressed in
terms of the elementary functions.

The paper is organized as follows. In section 2 we describe the basic properties of
the polytropic gas system which we use in the next sections. In section 3 we describe our
symmetry approach where we utilize the shift, scaling and projective operators in order to
generate the conserved densities. In section 4 we present explicitly a new series of the
conserved densities for different, physically interesting, models of the polytropic gas system
with γ = 2, 3, 4, 5, 5

3 , 7
5 ,−1. In section 5 we adopt our formalism to the degenerated case

(γ = 1) which is obtained from the contraction of the previous case. We show that, in this
case, the conserved densities are connected with the Bessel equation.

2. Hydrodynamical systems

The theory of hydrodynamical-type systems of the nonlinear equations [5]

ui
t =

N∑
j=1

υi
j (u)uj

x i, j = 1, 2, . . . , N (1)

where u = (u1, u2, . . . , uN) and υi
j are some functions, integrable by the generalized

hodograph method [6], is closely related to the overdetermined systems of first-order partial
differential linear equations. The conservation laws are such that

∂h

∂t
= ∂g

∂x
(2)

where h(u) is density and g(u) is flux. Then, densities satisfy the following linear system of
the first order

∂k(∂ih) = �i
ik(∂ih) + �k

ik(∂kh) i �= k (3)

where

�i
ik ≡ ∂kµ

i

µk − µi
i �= k ∂k ≡ ∂/∂rk (4)

and rk(u) are the so-called Riemann invariants. The hydrodynamic-type system (1) for N = 2
can be rewritten in the diagonal form

ri
t = µi(r)ri

x (5)

and there is no summation on the repeated indices. However, for an arbitrary N > 2 the
diagonalizability does not hold in general [13]. Thus, equation (3) is a linear system of first-
order partial differential equations with variable coefficients. The general solution of such a
system is determined up to N arbitrary functions of a single variable.

There are many particular cases of the system (3) for which a general solution is expressed
in explicit and in compact form (see [7]). If we cannot find a general solution of such a system,
then an alternative way to solve the Cauchy or Goursat problems is to create an infinite number
of particular solutions [8].

It appears that the conserved densities can be used in the construction of particular
solutions. Indeed, let us consider the polytropic gas

ηt = ∂x(uη) ut = ∂x

[
u2

2
+

ηγ−1

γ − 1

]
(6)

and nonlinear elasticity equations

ηy = ux uy = ∂x

[
ηγ−2

γ − 2

]
(7)

which are commuting flows to each other.
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The solution of the first system obtained by the hodograph method is

t = h − η
∂h

∂η
x = −∂h

∂η
− u

η

∂h

∂u
(8)

while for the second the solution is

x = ∂h

∂η
y = ∂h

∂u
(9)

where h is some solution of the Tricomi-like equation

huu = η3−γ hηη. (10)

The previous equation is nothing but the equation on the conservation law densities for both
systems. Equations (8) and (9) realize the general or particular solution for both systems if h
is the general or particular solution of the equation (10), respectively.

In [3] and [4] two infinite series of quasi-linear conservation laws were constructed for
the polytropic gas and for the nonlinear elasticity equations, respectively. Quasi-linear means
that these conservation law densities are polynomials with respect to u, η and ηγ where γ is
an arbitrary polytropic constant.

However, as we see in the next section, these densities do not exhaust the set of all possible
conserved densities.

3. Symmetry operator approach for γ �= 1

Let us first consider the more general form of the polytropic gas system

ηt = ∂x(uη) ut = ∂x

[
u2

2
+ ηf ′′(η) − f ′(η)

]
(11)

and the nonlinear elasticity equation

ηy = ux uy = ∂xf
′′(η) (12)

where f is an arbitrary function. Our generalized systems constitute Hamiltonian equations
with the following local structure

ηt = ∂x

δH

δu
ut = ∂x

δH

δη
(13)

where

H =
∫ [

1

2
u2η + ηf ′(η) − 2f (η)

]
dx (14)

for the generalized polytropic gas system (11) while for the generalized nonlinear elasticity
equation (12) we have

ηy = ∂x

δH̃

δu
uy = ∂x

δH̃

δη
(15)

where

H̃ =
∫ [

u2

2
+ f ′(η)

]
dx. (16)

In order to obtain the conserved densities we try to eliminate the differentials dp and
dq from the corresponding conservation laws for generalized polytropic gas and nonlinear
elasticity systems, respectively. Differentiating the corresponding conservation laws

ht = px ht = qx. (17)
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and using equations (11) and (12) by straightforward calculation we have

dp = [uhu + ηhη] du + [ηf ′′′(η)hu + uhη] dη

dq = hη du + f ′′′(η)hu dη.
(18)

Then, the compatibility conditions ((qu)η = (qη)u, (pu)η = (pη)u) lead to the Tricomi-like
equation

hηη = f ′′′(η)huu. (19)

Since this equation is compatible with the shift symmetry operator (see [10])

δ = ∂/∂u (20)

we can search solutions in the form

hu = λh (21)

where λ is an arbitrary parameter. This is the eigenvalue problem for the shift symmetry
operator. Then the Tricomi-like equation is transformed to the linear ordinary differential
equation

hηη = λ2f ′′′(η)h. (22)

However, this equation cannot be solved explicitly for an arbitrary f .
Let us observe that the shift symmetry operator transforms one solution of the Tricomi-like

equation on to another one

∂uhn+1 = hn. (23)

This means that all conservation law densities hk and corresponding fluxes pk, qk can be
written in the quadratures recursively (see for instance [2, 8, 10]):

dhk+1 = hk du + qk dη dqk+1 = qk du + f ′′′(η)hk dη (24)

dpk+1 = [uhk + ηqk] du + [ηf ′′′(η)hk + uqk] dη. (25)

We can start this by considering some simple conservation laws such as, for example,
h

(1)
0 = η, q

(1)
0 = u or h

(2)
0 = u, q

(2)
0 = f ′′(η). Interestingly, all known examples of the

conserved densities could be obtained in this way (see, for example, [2, 3, 9, 12]).
However, we demonstrate different possibilities which give us a new series of the

conserved densities. Our main idea is based on the following observation.
The Tricomi-like equation (10) is compatible with three local symmetry operators:

(1) shift operator

δ = ∂

∂u
(26)

(2) scaling operator

R = u
∂

∂u
+

2

γ − 1
η

∂

∂η
(27)

(3) projective operator

S =
[
γ − 1

4
u2 + (γ − 1)−1ηγ−1

]
∂

∂u
+ uη

∂

∂η
+

γ − 3

4
u. (28)
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These operators, with the identity operator, constitute closed Lie algebra, with the
following commutation relations

[δ, S] = 2

γ − 1
R +

γ − 3

4
[δ, R] = δ [R, S] = S. (29)

They act on homogeneous conservation law densities as follows

δhk+1 = hk Rhk = ckhk Shk = hk+1 (30)

where ck are degrees of homogeneity. Thus, by combining these symmetry operators we can
describe all quasi-linear conservation law densities.

Interestingly, if we rewrite the Tricomi-like equation using the Riemann invariants we
obtain the famous Euler–Darboux–Poisson equation

∂h

∂r1∂r2
= ε

r1 − r2

[
∂h

∂r1
− ∂h

∂r2

]
(31)

where

ε = 3 − γ

2(1 − γ )
r1 = u +

2

γ − 1
η

γ−1
2 r2 = u − 2

γ − 1
η

γ−1
2 . (32)

Now the symmetry operators are

δ = ∂

∂r1
+

∂

∂r2
R = r1 ∂

∂r1
+ r2 ∂

∂r2
(33)

S = (r1)2 ∂

∂r1
+ (r2)2 ∂

∂r2
+ ε(r1 + r2). (34)

The ‘zero solutions’ of the shift operator δ

δh0 = 0 (35)

can be found immediately

h
(1)
0 = 1 h

(2)
0 = η (36)

while for the projective operator we can obtain

h
(1)
1 = u h

(2)
1 = uη (37)

etc.
The ‘zero solutions’ of the projective operator are easy to obtain also from the Riemann

invariant (r1, r2) form

h = (r1r2)−ε. (38)

If we shift the Riemann invariants, in this formula, on arbitrary parameter λ we obtain the
generating function on the conservation law densities. When λ → ∞ we can obtain known
densities.

In order to obtain new densities we demonstrate quite different possibilities. Let us
consider the following recursive chain

Rh
(0)
k = ckh

(0)
k Rh

(1)
k = ck

[
h

(1)
k + h

(0)
k

]
Rh

(2)
k = ck

[
h

(2)
k + h

(1)
k

]
(39)

etc, where h
(0)
k are the quasi-linear conserved densities.

Now h
(i)
k , i = 1, 2, . . . are new conserved densities which satisfy the Tricomi-like

equation (10). Notice that the second formula in equation (30) is not in contradiction to
the previous chain because formula (30) is valid for homogeneous conservation laws only.
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Figure 1. Generation of the nonpolynomial densities.

Now let us consider the shallow water equation, e.g. the polytropic gas system with γ = 2.
Let us choose the first homogeneous solutions of equation (30)

h
(0)
1 = u h

(0)
2 = η h

(0)
3 = uη h

(0)
4 = u2η + η2 (40)

etc. As a result we find that

h
(1)
1 = 2

√
u2 − 4η(ln

(√
u2 − 4η + u

) − ln 2) +
(
u −

√
u2 − 4η

)
ln η

h
(1)
2 = u2

2
+ η ln η

h
(1)
3 = 1

4
(u3 + 6uη ln η)

h
(1)
4 = 1

6
(u4 + 12u2η ln η + 12η2 ln η − 18η2)

(41)

are conserved densities also. Now, let us apply this procedure to h
(1)
2 and h

(1)
3

h
(2)
2 = 1

18 (−36η ln2(
√

z + u) + 18 ln(
√

z + u)(2ηu ln(4η) − 2η + u
√

z)

+ 9u
√

z(1 − ln(4η)) − 36η ln η ln 2 + (9u2 + 18η) ln η − 18u2 + 32η)

h
(2)
3 = 1

12 (−36ηu ln2(
√

z + u) + ln(
√

z + u)(36ηu ln(4η) − 6ηu

+ 6
√

z(u2 + 8η)) − 36ηu ln(η) ln 2 + 3 ln η(u3 + 6ηu − √
z(u2 + 8η))

+ 3
√

z(1 − 2 ln 2)(u2 + 8η) − 16ηu − 8u3)

(42)

where z = u2 − 4η.
We have obtained rather complicated formulae which contain the logarithm in the second

power. Now we can continue this procedure obtaining complicated formulae which contain
the logarithm in higher powers. Furthermore, we can combine our method with this which
generates quasi-linear densities, obtaining figure 1.

Figure 1 is obviously closed. In order to see this, let us start consideration from some
h

(n)
k . Applying at first projective and at the next step scaling transformations, we obtain

RSh
(n+1)
k = ck+1

(
Sh

(n+1)
k + Sh

(n)
k

)
. (43)

Finally, applying these operators in the reverse order we obtain

SRh
(n+1)
k = ck

(
Sh

(n+1)
k + Sh

(n)
k

)
. (44)

In this way, our densities are determined up to an arbitrary multiplicative constant.
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4. Non-polynomial densities for an arbitrary γ �= 1 in a polytropic gas system

For an arbitrary γ , our generating equations become

Rh
(n)
k = ck

(
h

(n)
k + h

(n−1)
k

)
. (45)

Now we have to solve the Tricomi-like equation on h
(n)
k , which is however rather hard to do.

We restrict ourselves, for this reason, to two cases where h
(0)
1 = u and h

(0)
2 = η.

For the first case, we have c1 = 1. By direct verification we can check that

h
(1)
1 = uh(τ) = u ln u (46)

where τ = u2η1−γ satisfies equation (45). The Tricomi equation reduces in this case to

τ 2(4 − (γ − 1)2)
∂2h

∂2τ
+ (6 − γ (γ − 1)τ )

∂h

∂τ
+ 1 = 0. (47)

For the second case, we have c2 = 2
γ−1 . Similarly to the first case, by direct verification,

we can check that

h
(1)
2 = ηh(τ) + η ln η (48)

satisfies equation (45). Substituting h
(1)
2 to the Tricomi-like equation (10) we obtain the

following equation on the function h(τ)

τ (4 − τ(γ − 1))
∂2h

∂2τ
− (2 − (γ − 1)(γ − 2)τ )

∂h

∂τ
+ 1 = 0. (49)

In both cases, it is possible to obtain closed formulae for particular values of the parameter γ .
However, we can simplify our consideration using different coordinates. For example,
choosing the coordinates r and p as (see [3])

η = rp u = 1

γ − 1
(rγ−1 + pγ−1) (50)

we can rewrite the scaling symmetry operator and Tricomi-like equation as

R = 1

γ − 1

(
r

∂

∂r
+ p

∂

∂p

)
p3−γ ∂2h

∂2p
= r3−γ ∂2h

∂2r
. (51)

Taking into account h
(0)
1 = r , we have obtained the following solutions on the h

(1)
1 densities

γ = 2 h
(1)
1 = −(r − p) ln(r − p) + p ln(p)

γ = 3 h
(1)
1 = (r + p) ln(r + p) − (r − p) ln(r − p)

γ = 4 h
(1)
1 = −(r − p) ln(r − p) + (r + 2p) ln(p2 + pr + r2) +

√
3p arctan

p + 2r√
3p

γ = 5 h
(1)
1 = (p + r) ln(p + r) + (r − p) ln(r − p) + r ln(p2 + r2) + 2p arctan

r

p
.

(52)

Finally, let us present the solutions for γ = 5
3 , 7

5 and γ = −1 which are interesting from the
physical point of view because these describe the dynamics of one-atomic gas and two-atomic



8470 M V Pavlov and Z Popowicz

gas [11] and two-dimensional nonlinear Born–Infeld electrodynamics [12], respectively:

γ = 5

3
h

(1)
1 = 3

4
p arctanh τ

1
3 +

r

2
ln

(
3τ

2
3 − 3τ

4
3 + τ 2 − 1

) − r ln τ − 3rτ− 2
3

γ = 7

5
h

(1)
1 = 5

4
p arctanh τ

1
5 +

r

2
ln(−10τ

4
5 − 5τ

8
5 + 5τ

2
5 + τ

6
5 + τ 2 − 1)

− r ln τ − 5

3
rτ− 2

5 − 5rτ− 4
5 + r ln r

γ = −1 h
(1)
1 = 1

2

(
r ln

p2r2

r2 − p2
+ p ln

r − p

r + p

)
.

(53)

5. Symmetry operator approach for γ = 1 and corresponding non-polynomial densities

For this case, the polytropic gas and the nonlinear elasticity systems are

ηt = ∂x(uη) ut = ∂x

[
u2

2
+ ln η

]
(54)

ηy = ux uy = ∂x

(
−1

η

)
(55)

respectively. For this case, the Euler–Darboux–Poisson equation (31) degenerates because
ε → ∞. Similarly the scaling operator R (see equation (27)) also becomes degenerated.

In order to solve this problem we notice that the analogue of the symmetry algebra (28)
can be obtained considering the contraction with respect to γ = 1. If we rescale → γ−1

2 R

and compute the limit when γ → 1 we obtain

δ = ∂u R = η∂η S = ln η∂u + uη∂η − u/2. (56)

Interestingly now, in the contraction limit, the homogeneity property (30) does not hold.
This means that the Tricomi-like equation

huu = η2hηη (57)

has no homogeneous solutions.
However, the quasi-homogeneous solutions could be obtained ([9]). By quasi-

homogeneous we mean homogeneous with respect to the one variable u or ln η.
For our further applications, we describe another possibility. We have constructed the

generating function for the conserved densities. To end this, we consider the eigenvalue
problem for each symmetry operator.

1. For the scaling operator R (see equation (56)) the eigenvalue problem

hξ = λh (58)

where ∂ξ ≡ η∂η, reduces the Tricomi-like equation to the linear ordinary differential
equation of the second order

huu = λ(λ − 1)h. (59)

These equations can be easily integrated and we obtain

h = exp
[√

λ(λ − 1)u + λξ
]
. (60)
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2. For the shift operator δ (see equation (56)) the eigenvalue problem

hu = λ̃h (61)

reduces the Tricomi-like equation to the linear ordinary differential equation of the second
order

hξξ − hξ = λ̃2h. (62)

These equations are also easy to integrate and the solutions have the same form as (60) in
which we should replace λ2 → λ̃(λ̃ − 1).

If we expand function h near λ → 0 or λ → 1, then we can obtain two well-known
infinite series of conservation law densities [9].

3. Projective operator S (see (56)). If we substitute

h = q exp[ξ/2] u = 2s cosh θ ξ = 2s sinh θ (63)

where s and θ are new functions, then the eigenvalue problem looks like

qθ = λq. (64)

Now the generating function is

q = ψ(s) exp[λθ ] (65)

where the function ψ satisfies the Bessel equation

ψ ′′ +
1

s
ψ ′ +

[
1 − λ2

s2

]
ψ = 0. (66)

Let us present the most simple example of the conserved densities obtained in this way,
where it is possible to describe the Bessel function by the elementary functions for which
λ = 1

2

h =
√

η

u − ln η
cos

(√
u2 − ln2 η

2

)
. (67)

Using the recursion relations, known in the theory of Bessel functions, it is possible to
generate infinite sets of conserved densities written in terms of elementary functions without
any reference to the recursion operator, which appears in the Hamiltonian approach to the
polytropic gas systems. Finally we can use the shift or scaling symmetry operators and
generate some conserved densities, as we have done in the previous sections.

6. Conclusion

In this paper we have constructed a new extra series of conserved densities for the polytropic
gas model and nonlinear elasticity equation avoiding the use of the recursion operator or
Lax formalism. Our Hamiltonians appeared as non-polynomial expressions which contain
logarithmic functions. If we continue our procedure to these logarithmic densities in the next
step, we obtain expressions with the logarithmic function in an arbitrary power. We considered
the singular case of the polytropic gas system also, for which we found the non-homogeneous
solutions expressed in terms of Bessel functions. If we apply the point transformation to
the symmetry operators then they can change the role. This means that the scaling and shift
operators are equivalent to each other, which it easy to see in the Riemann invariants (33) or
(58) and (61). We have presented this method for two hydrodynamical systems only, but this
method can also be adopted for more complicated equations.
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